多宝体育

全国统一热线:

400-123-4657

多宝体育(中国)官方手机版
多宝动态

NEWS

产品中心PRDUCTS

技术支持RECRUITMENT

    技术支持分售前技术支持和售后技术支持,售前技术支持是指在销售遇到无法解答的产品问题时,售前技术支持给予帮助;售后技术支持是指产品公司为其产品用户提供的售后服务的一种形式,帮助用户诊断并解决其在使用产品...
点击查看更多
多宝体育

当前位置: 多宝体育 > 多宝动态 > 多宝体育

多宝体育图解半导体制程概论(二) 半导体器件-分立器件电子

2023-06-15 07:20:24

  在正文之前,再次说明本书是2005年出版的,而半导体器件经过这16年来的发展,又新增很多类别:

  模拟IC-手机射频天线、IOT无线(BLE\WiFi\ZigBee等)、无线充等

  存储IC-存储相较于当年,已经从微米提升到纳米,容量也大大增加。3D Nand,SSD 等技术也不断发展

  逻辑IC-是国内半导体最热门得类别,从普通MCU到AI技术。原有冯诺依曼架构也在被颠覆中。

  本书内容虽然受制于时代内容有缺陷,但框架分类仍然适用,新门类需要个人添砖加瓦。

  半导体器件如果按市场应用分类,可以参考美国德州仪器官网,划分得非常合理和全面:

  现在被称作半导体器件的种类如下所示。按照其制造技术可分为分立器件半导体、光电半导体、逻辑IC、模拟IC、存储器等大类,然后再细分出MCU、Memory、电源IC、LED等子类别。

  此外,多宝体育IC除了在制造技术上的分类以外,还有以应用领域、设计方法等进行分类,最近虽然不常用,但还有按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

  (如今东芝半导体的产品,只剩下存储类的Nand生意还可以,且独立分拆,由美资持有大比例股权)

  随着芯片集成化越来越高,半导体技术都出现了不同程度的融合。例如CPU和MCU同时包含了逻辑\存储\模拟技术,图像传感芯片包含了光电\模拟\逻辑技术,无线充芯片包含了分立\模拟\逻辑技术。有时候区分一颗芯片属于产品,就看他最主要的功能,例如SSD内部有控制器和模拟IC,但它最主要的还是存储功能,那就划分到存储器件的版块。

  分立器件,可以说是半导体器件最简单的基础产品,常被单独用于较为简单的电子产品中。

  利用PN接合的少数载子的注入和扩散现象,只能一个方向(正向)上流通电流。如果在PN接合二极管的N型半导体加上负压、在P型半导体加上正电压,就可使电流流通。我们将该电流的流动方向叫做正向。如果外加正、负压与上述反方向的电压,则几乎不会流通电流。我们将该方向叫做反向。如果提高PN接合二极管的反向电压,则电流在某个电压值会急剧增加。我们将该电流叫做击穿电流。此时的电压值对电流而言基本上为定值。

  二极管在一般的应用上,有利用电流只在一个方向上流通的功能的交流电压主的整流电路。

  利用PN接合二极管的反向击穿电压的即为齐纳二极管(恒定电压二极管)。由于该电压对于电流来说基本上为定值,因此用于恒定电压调节器的基准电压源或浪涌电压(异常电压)吸收等用途。

  . 接合金属和半导体来替代PN接合的肖特基势垒二极管(Schottky barrier diode);

  . 变容二极管、混合二极管、夹在真性半导体的I层中的PIN二极管等高频用二极管。

  2)中心抽头:用于一个封装内组装两个器件,且使用带有中心抽头的双绕线变压器的全波整流电路等。

  高速切换二极管在正向流通电流的状态下,以高速切换到反向时,可瞬间阻止电流,能实现高速动作(切换整流)的结构的二极管。

  PN接合二极管将外部电压从正向切换到反向时,就会在瞬间有较大的反向电流流通。这是因为从PN接合注入的少数载子反向移动,而该电流将流通直到少数载子流出或消灭为止。高速开关二极管用于缩短反向电流变为零为止的时间(反向恢复时间:trr)、改善反向电流波形的平滑性。

  高速恢复二极管在结构上和一般整流二极管基本相同,但它是一种有白金、金等掺杂物质扩散在Si结晶中,增加了电子和空穴的再结合中心,关闭后少数载子会立刻被消灭的二极管。因此可以提高二极管的反向恢复特性(反向恢复时间:trr),实现高速动作。

  高效二极管比上述FRD速度更快,损失更低(正向电压较低),因此它使用外延晶圆,在利用导电调制效果(参考PIN二极管)来降低正向电阻的同时,通过追加重金属扩散,能在不损坏正向特性的情况下,提高反向恢复特性。HED用于比FRD更为高速的开关电路。

  真空能量等级和传导带等级的能量的差(称为电子亲和力)是利用金属和半导体的不同,根据和PN接合不同的原理,通过改变外加电压的方向来控制电流开合的。它和利用少数载子扩散电流的PN接合不同,主要是利用多数载子的漂移电流,因此可以实现高速开关。肖特基势垒二极管和PN接合二极管相比反向电流较大,因此在高压下使用时容易发生热故障,使用时要非常小心。

  如果将PN接合二极管的反向电压逐渐提升的话,PN接合部的电场会升高,某个电压点会产生较大的电流。齐纳二极管(也叫稳压二极管)正是积极利用了这种电压电流特性。这种电流开始急剧流动的现象就是由齐纳击穿,或者雪崩击穿引起的。齐纳击穿是由隧道效应引起的,由于强大的电场将束缚电子拉离了接合,成为自由电子,并形成了电流,因此该电压会保持负的温度系数。而所谓雪崩击穿,是空乏层的电场中被加速的电子、或者空穴的高能量赋予了束缚电子以能量,而成为自由电子的现象,这种新的电子也被加速,并让其他束缚电子成为自由电子的现象重复的结果,就是形成了较大的电流,该电压会保持正的温度系数。大约6V以下主要是齐纳击穿,而6V以上则主要是由雪崩击穿引起的。因此,大约在5V时温度系数为零。

  齐纳二极管用于串联稳压器的在准电压源或汽车的电源线、电话线的浪涌电压(异常高压脉冲电压)的吸收多宝体育,或者连接在计算机等的连接器上,来保护连接连接器时产生的ESD(静电压破坏)等。

  当外加在二极管上的电压(反向)增加的话,则空泛层的宽度随之扩大,正如电容器的2片电极之间的间隔变宽那样,因此二极管的容量不断变小。利用这种特性,用于协调器等调谐电路等。

  在添加高浓度杂质的P型、N型区域外加低电压时所形成的狭小空乏层,载子以穿透现象流通。该现象在正向电流流通前的低电压时产生,因此一部分显示负的斜率特性,而该二极管即使用这种特性。

  穿透二极管的特性曲线)雪崩二极管(IMAPATT二极管:Impact Avalanche and Transit Time diode)

  将反向电压加在PN接合面,如果超出雪崩电压,则会发生载子的累增雪崩现象。如果将共振器的频率调谐在载子的累增雪崩所穿透的I区域的长度所规定的到达时间上,那么3-300GHZ之间可以产生大输出的振荡器或放大器。

  以N型砷化镓(GaAs)的结晶构成。虽然由于电压可使电子的速度增加,但在某个临界值,电子的运动能量会被结晶格子所吸收,而使速度降低。而且外加大于临界值的电压时,在负电极附近会发生高电场区域,并在结晶中移动。由于这种高电场区域的产生、移动、消灭都是以周期性进行,因此用于5-50GHZ的微波振荡器等.

  双极晶体管中根据半导体的组合方式分为NPN型和PNP型。另一方面,场效应管因结构而分为接合型场效应管(结构FET)和MOS型场效应管(MOSFET)。还可再分为N通道、P通道,N通道中电流的主体为电子,P通道中为空穴。

  NPN晶体管中,为了消除基极、发射极接合面的电位势垒而外加正向电压的话,电子将从发射极的范围注入基极范国。削薄基极层的厚度后,几乎所有的电子都会作为扩散电流到达基极、集电极接合面,而成为集电极电流。同时空穴也从基极注入发射极,成为基极电流,但将发射极的杂质浓度提高到基极杂质100倍的话就可以降低电流的比例,依靠微小的基极电流可以控制较大的集电极电流。

  高频特性良好,特性由物理量决定,因此偏差少,适合于无线设备的高频电路等模拟电路。而且电流驱动能力较大,因此作为电源、音频输出、电视机的水平偏向用等功率器件被广泛使用。

  达林顿是一种三极管接法的名称,有成品达林顿管,也有由两只独立的三极管组成一只达林顿管。

  场效应管和双极晶体管不同,仅以电子或空穴中的一种载子动作的晶体管。按照结构、原理可以分为:接合型场效应管 和 MOS型场效应管

  N通道接合型场效应管如图所示,以P型半导体的栅极从两侧夹住N型半导体的结构。将PN接合面上外加反向电压时所产生的空乏区域用于电流控制。

  即使栅极电压为零,也有电流流通,因此用于恒定电流源或因低噪音而用于音频放大器等。

  即使是夹住氧化膜(O)的金属(M)与半导体(S)的结构(MOS结构),如果在(M)与半导体(S)之间外加电压的话,也可以产生空乏层。再加上较高的电压时,氧华膜下能积蓄电子或空穴,形成反转层。将其作为开关利用的即为MOSFET。

  在动作原理图上,如果栅极电压为零,则PN接合面将断开电流,使得电流在源极、漏极之间不流通。如果在栅极旧外加正电压的话,则P型半导体的空穴将从栅极下的氧化膜-P型半导体的表面被驱逐,而形成空乏层。而且,如果再提高栅极电压的话,电子将被吸引表表面,而形成较薄的N型反转层,由此源杖(N型)和漏极(N型)之间连接,使得电流流通。

  因其结构简单、速度快,且栅极驱动简单、具有耐破坏力强等特征,而且使用微细加工技术的话,即可直接提高性能,因此被广泛使用于由LSI的基础器件等高频器件到功率器件(电力控制器件)等的领域中。

  具有高速电子移动率、低噪音特性、高fr(断开频率)等优良的特性。以使用化合物半导本为主。GaAaMESFET、HEMT、HBT等为代表一晶体管,用于移动通讯、卫星通讯等领域。

  GaAs MESFET:是利用了半导一材料中比Si移动性好的GaAs (Ⅲ-V族的化合物半导体)的接合型FET。具有高频、高增益、低噪音的特征。

  和Si不同, GaAs无法得到优质的栅极氧化膜,因此无法形成MOSFET.是一种使用金属-半导体接合面(肖特基接合面)作为栅极结构的接合型FET。在半绝缘性的基板的表面侧注入离子,或通过外延成长所作的N型GaAs通道层,上面有附加肖特基接合面的栅极电极和欧姆接点的源极、漏极电极。

  动作原理是将在金属-半导体接合面延伸到通道层内的空乏层,通过栅极电压加以控制,从而控制源极、漏极电流的结构。

  所谓HEMT,是指将AIGaAs/GaAs层混合接合部界面所产生的电子积蓄层作为通道的晶体管。因为可以直接通过栅极电极控制通道,因此除了低噪音、高增益以外,还具有特别优良的GHz带的高频波的特征。

  将在Ⅲ-V族化合物半导体混合接合面部分合面)所产生的高移动率的电子层(或空穴层)作为通道的肖特基栅极型FET。将栅极电极设置在AIGaAs层上,使其厚度变薄,在外加栅极电压时,使AIGaAs层完全空乏。

  由混入AIGaAs层的施体不纯物提供的电子横切混合接合面后,向能量较低的GaAs侧移动,移动后的电子被AIGaAs侧施体离子的库仑力吸引到混合接合界面,形成极薄的通道层。通过栅极电压控制该2次元电子气体的浓,控制源极、漏极之间的电流。这样,电子和不纯物离子被分离,GaAs中的电子可以不受到不纯物散乱的影响,高速移动。

  HBT是用于高频开发出的双极晶体管的一种。和一般的双极晶体管(单接合双极晶体管)中,发射极、基极采用相同的半导体材料制成的相反,HBT的基极多宝体育、发射极使用不同的半导体材料。一般的双极晶体管为了提高高频特性,将基极的不纯物浓度提高,将在极层弄薄,但由于电流放大率会下降,因此有一定的界限。制成HBT结构,就能利用构成发射极和基极的半导体材料的能量差的不同,在不降低电流放大率的的情况下,提高不纯物浓度,进一步提高高频特性。

  其结构就是将通常的Si的NPN晶体管的基极通过外延成长转换为SiGe混晶基极。可以使用和一般硅双极相同的制程、设备制成,因此可以制造具有优良高频特性、价格便宜的半导体器件。适用于混合双极晶体管和CMOS的高频BiCMOSLSI用。

  大功率MOSFET绝大部分被用于开关。因此ON电压(ON电阻)的降低和调制的高速化很重要。大功MOSFET是具有高速性和高破坏耐量的理想型功率控制哭件。

  一般MOSFET,其电流方向与芯片表面的方向平行,相反功率MOSFET是在芯片的垂直方向流经电流。这种结构中,ON电阻下降,可以流经大电流。

  功率MOSFET因为特性比较稳定,使用方便,因此广泛使用。在DC-DC转换器等开关电源、照明设备的反相电路、马达的反相电路及速度控制等多方面得到广泛的使用。

  一般MOSFET的缺点,是提高耐压的话ON电阻就会急增加。超接MOSFET就是为了改善这个缺点而发明出来的一种器件。纵向延伸的薄板状N层和P层相邻配置,令N层和P层的杂质浓度一致。在ON状态下电子流过比电阻较低的N层,可以获得较低的ON电阻。此外,在OFF状态下使N层-P层空乏化,就能得到和本征半导体相同的平坦的电场分布,从而实现高耐压。

  IGBT是高耐压MOSFET的一种。它利用导电调制效果(参照PIN二极管)改善了一般MOSFET的缺点----伴随着高耐压化而产生的ON电阻的增加。

  要实现MOSFET的高压化。需要杂质浓度比较低,且层厚比较厚的漏极N-区域。因此,MOSFET在ON状态下的ON电阻会增大。IGBT就是在相当于MOSFET漏极的部位增加了正向的PN接合,从P型半导体向N型半导体注入空穴。这样一来,就能在该区域形成电子、空穴密度非常高的状态,实现较低的ON电阻电子。

  IGBT被广泛应用于变频空调、IH烹调设备等白色家电产品及工业设备、泵、稳压电源、风力发电等工业用途,以及混合动力汽车、燃料电池车、还有铁路车辆的马达控制等领域。

  SCR silicon controlled rectifier thyristor 可控硅整流器 简称可控硅晶闸管(硅控制整流器件)具有NPNP的4层结构,可以通过栅极信号控制正向电流通电时间的开关用半导体器件。

  从等价电路的角度来说,相当于NPN晶体管和PNP晶体管各自的基极作为内部结构连接到了对方的集电极上。因此,NPN的基极上一旦从外部流入电流后,相应产生的NPN的集电极电流就成为PNP的基极电流,该基极电流所对应PNP的集电极电流就成为NPN的基极电流,这样的循不不断重复完全成为ON状态(栅闩状态)。

  适合于交流电压的开关及相位控制电路、电容器电压的放电电路、继电器及螺线管的开关。

  三端双向可控硅的结构是将2个晶闸管相互反向并联。和晶闸管不同,可控制正反任一方向的电流。电流可双向流动是因为总有一个晶闸管是正向ON状态的。

  使用商用电源的机器,特别在洗衣机及吸尘器等家电设备及复印机等OA设备、AC马达的旋转控制及加热器功率控制、灯的调光控制、继电器及螺线管的开关电路等方面被广泛使用。

  作为数千V、数百A的电力控制用器件,分成GTO(门极关断晶闸管)和LTT(光触发晶闸管)

  GTO结构和表一般的晶闸管类似,和一般的晶闸管一样在栅极和阴极之间外加正向电压的话,就会进入ON状态。此外,在栅极上外加反向电压主,让阳极电流被栅极侧吸收的话,就能进入OFF状态的自已消弧型晶闸管。

  一般的晶闸管在栅极上外加电气信号后进入ON状态,而如果是LTT的话,则在栅极上照射光仟送过来的光信号,进入ON状态。可以从电力上将主电力系统和驱系统分离开来,因此能令装置的结构更加间单。

  可控硅与普通整流二极管的不同解: (二极管升级版,可以通过微弱电流控制大电流\电压开关

  可控硅元件又叫晶体闸流管(简称晶闸管)属于电力半导体器件。从结构上看,它不同于由一个PN结构成的硅整流二极管(称为硅整流元件),而是由三个PN结构成的四个导电区(P--N--P--N)、三个电极(阳极、阴极、和门极)的半导体器件。从性能上来说,它不仅用于整流,而且可以通过门极外加的控制信号,控制它的导通和关断,因而可以用作于无触点开关,以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率交流电等。

全国统一热线

400-123-4657
+地址:广东省广州市天河区88号
+传真:+86-123-4567
+邮箱:www.sjzfish.cn

友情链接

微信平台

关注多宝体育

手机官网

手机官网